Gangliosides Stabilize Ionic Homeostasis in Rat Cortical Synaptosomes Exposed to Toxic Concentrations of Glutamate

I. O. Zakharova, K. I. Shestak, V. G. Leont'ev, and N. F. Avrova

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 129, No. 1, pp. 45-47, January, 2000 Original article submitted December 8, 1998

Glutamate significantly increased intracellular calcium concentration, enhanced $^{45}\text{Ca}^{2+}$ entry, and activated Na⁺/Ca²⁺ exchanger in synaptosomes from rat cerebral cortex. Preincubation with GM₁ ganglioside reduced the glutamate-induced increase in intracellular calcium and $^{45}\text{Ca}^{2+}$ entry. Gangliosides and glutamate stimulated Na⁺/Ca²⁺ exchanger showing additive effects.

Key Words: GM, ganglioside; glutamate; calcium; cerebral cortex synaptosomes

Neuronal damage in ischemia, brain trauma, and some neurological diseases is largely determined by toxic effects of high concentrations of glutamate released into the intercellular space [2,3,12]. Excitotoxin-induced disturbance in intracellular calcium ([Ca²⁺]_i) homeostasis is considered to be the major cause of neuronal death under these conditions [4].

Activation of N-methyl-D-aspartate receptors triggering this process is a necessary but not sufficient condition for sustained elevation of [Ca²⁺],. An important role in the development of pathological processes initiated by excitotoxins is played by activation of free radical reactions [1,13] and other processes stimulating Ca²⁺ entry and inactivating the system stabilizing calcium homeostasis.

Gangliosides, the most complex animal glicosphingolipids, improve viability of cultured nervous cells exposed to glutamate [3,6] and significantly decrease [Ca²⁺], which seems to underlie their neuroprotective activity [12]. However, the mechanism of this effect remains unclear. We found no reports on the effects of gangliosides on glutamate-induced activation of Ca²⁺ entry or activity of Na⁺/Ca²⁺ exchanger.

Our aim was to study the mechanism of stabilizing effect of gangliosides on Ca²⁺ homeostasis dis-

turbed by excessive glutamate by investigating the effects of glutamate and gangliosides on [Ca²⁺], ⁴⁵Ca²⁺ entry, and activity of Na⁺/Ca²⁺ exchanger in synaptosomes from rat cerebral cortex.

MATERIALS AND METHODS

Synaptosomes isolated from the brain of male Wistar rats (150-180 g) as described elsewhere [9] were resuspended in buffer A containing (in mM): 135 NaCl, 1.2 MgSO₄, 2.0 KCl, 10 glucose, and 20 tris-HCl (pH=7.4), centrifuged at 15,000g for 15 min, and resuspended again in buffer A (4-5 mg/ml protein concentration).

[Ca²⁺]_i was measured with Fura-2M (Sigma), a fluorescent calcium probe. Synaptosomes (1 ml) were mixed with 1 ml buffer A containing 0.5% BSA (free from fatty acids) and 8 μM Fura-2M dissolved in 0.4% DMSO and incubated for 40 min at 30°C [16]. Preincubation with 50 nM GM₁ ganglioside was performed simultaneously with Fura-2M loading, which was stopped by adding 20-fold volume of buffer A followed by 15-min centrifugation at 12,000g. The sediment was resuspended in MgSO₄-free buffer B containing (in mM): 135 NaCl, 2.0 KCl, 1.0 CaCl₂, 10 glucose, and 20 tris-HCl (pH=7.4) and incubated with glutamate and other test compounds for 15 min at 30°C. Fluorescence was measured on a MPF-2A fluorimeter (Hitachi) at 340 and 380 nm excitation and 510 nm

Laboratory of Comparative Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg. *Address for correspondence:* avrova@lipid.mail.iephb.ru.Avrova N. F.

emission wavelength. [Ca²⁺]_i was calculated according to the formula:

$$[Ca^{2+}]_i = K_d \times (R - R_{min}/R_{max} - R) \times Sf_2/Sb_2$$
, where

R is the ratio of Fura-2 fluorescences at 340 and 380 nm; $R_{\rm min}$ and $R_{\rm max}$ are the same ratios in Ca²⁺-free medium and after saturation with Ca²⁺, respectively. Sf_2 is fluorescence at 380 nm in Ca²⁺-free medium and Sb_2 is the same after saturation with Ca²⁺. $R_{\rm min}$ and Sf_2 were measured in the presence of 2 mM EGTA and 0.1% Triton X-100; $R_{\rm max}$ and Sb_2 were measured after addition of 5 mM Ca²⁺ to saturate both EGTA and Fura-2. K_d was taken as 184 nm at 30°C [8].

Calcium accumulation in the control and glutamate-exposed synaptosomes was measured after 30-sec incubation in a medium containing (in mM): 135 NaCl, 1.2 K₂HPO₄, 3.0 KCl, 1.0 CaCl₂, 10 glucose, 20 tris-HCl (pH=7.4), and ⁴⁵Ca²⁺ (54 μCi/mmol). The protein content was about 200 μg/ml. Preincubation with various concentrations of GM₁ ganglioside was performed for 1 h at 37°C. Activity of Na⁺/Ca²⁺ exchanger was determined by the difference in ⁴⁵Ca²⁺ accumulation in NaCl- and choline chloride-containing media [5]. Radioactivity was measured on an LKB scintillation counter.

GM₁ ganglioside was isolated on silica gel columns [15]. Gangliosides were isolated from bovine brain as described elsewhere [7]. The isolated GM₁ was of 98-99% purity as shown by high-performance thin layer chromatography on Merck plates.

Synaptosomal protein concentration was measured [10] using bovine serum albumin as the standard. The data were analyzed statistically using Student's t test.

RESULTS

Glutamate (1 mM) significantly elevated synaptosomal $[Ca^{2+}]_i$ by on average 43.6±8.6% (p<0.05, Table 1). This finding agrees with published data showing that exposure to glutamate increases $[Ca^{2+}]_i$ in cultured cortical, hippocampal, and other neurons as well as in rat hippocampal synaptosomes [11,13,14]. Preincubation with 50 nM GM₁ ganglioside prevented the increase in $[Ca^{2+}]_i$ induced by glutamate alone or in combination with gangliosides (p<0.05, Table 1).

Glutamate significantly increased $^{45}\text{Ca}^{2+}$ entry into rat brain synaptosomes (p < 0.01). Preincubation with GM_1 ganglioside inhibited this effect (Table 2). This inhibition was dose-dependent within the concentration range from 1 pM to 10 nM. The most pronounced inhibition of calcium response to glutamate was attained with 10 nM GM_1 (p < 0.01), when $^{45}\text{Ca}^{2+}$ entry in the presence of glutamate did not differ from the control. GM_1 also exerted a significant, but less pro-

TABLE 1. Effect of Glutamate and GM₁ Ganglioside on $[Ca^{2+}]$, in Cortical Synaptosomes from Rat Brain $(M\pm m)$

Experiment	[Ca²+] _i , nM
Control (n=14)	501.6±64.1
Glutamate, 1 mM (n=14)	720.2±103.7*
GM ₁ , 50 nM (<i>n</i> =5)	574.4±103.9
Glutamate, 1 mM and GM ₁ , 10 nM (<i>n</i> =5)	1074.6±117.3*
GM_{τ} , 50 nM+glutamate, 1 mM, and GM_{τ} , 10 nM (n =5)	635.0±133.9**

Note. *p<0.05 in comparison with the control; **p<0.05 in comparison with glutamate alone.

TABLE 2. Effect of Glutamate and GM₁ Ganglioside on ⁴⁵Ca²⁺ Entry into Cortical Synaptosomes from Rat Brain (*M*±*m*)

Experiment	⁴⁵ Ca ²⁺ entry, nmol/mg protein/30 sec
Control	2.63±0.27
Glutamate, 1 mM	7.87±1.54*
GM ₁ , 1 pM+glutamate	7.19±2.06
GM,, 10 pM+glutamate	6.91±1.93
GM ₁ , 1 nM+glutamate	5.18±0.61
GM ₁ , 10 nM+glutamate	2.32±0.16⁺
GM ₁ , 100 nM+glutamate	4.54±0.52++
GM ₁ , 1 μM+glutamate	4.24±0.19
GM ₁ , 10 µM+glutamate	4.52±0.39++

Note. *p<0.01 in comparison with the control; *p<0.01, **p<0.05 in comparison with the effect of glutamate alone (Student's t test).

TABLE 3. Effect of Glutamate and GM₁ Ganglioside on the Activity of Na⁺/Ca²⁺ Exchanger in Rat Brain Synaptosomes

Experiment	Activity of Na ⁺ /Ca ²⁺ exchanger, %
Control	100
Glutamate, 1 mM	192.9±42.8
GM ₁ , 40 pM	183.5±41.3
GM,, 40 pM+glutamate	224.9±39.4*

Note. *p<0.05 in comparison with the control.

nounced inhibitory effect in a concentration of 10 μM corresponding to a micellar form of the ganglioside. The effects of glutamate and gangliosides on Na⁺/Ca²⁺ exchanger were similar and additive: significant activation of Na⁺/Ca²⁺ exchange (0.64±0.03 nmol Ca²⁺/mg protein/30 sec) was observed only after combined exposure to glutamate and GM₁ (Table 3).

These data suggest that the ability of ganglioside to inhibit Ca²⁺ entry induced by glutamate and other excitotoxins plays an important role in the stabiliza-

tion of intracellular Ca²⁺ homeostasis. As previously shown [6,12] gangliosides do not interfere with glutamate-induced activation of N-methyl-D-aspartate receptors and exert their effect at later stages. The increase in [Ca²⁺]_i after exposure to toxic glutamate concentrations can result from increased membrane permeability due to accumulation of lipid peroxidation products [14]. Glutamate-induced stimulation of ⁴⁵Ca²⁺ entry is significantly inhibited by α-tocopherol and SOD [1], therefore the effect of gangliosides can be associated with inhibition of free radical reactions activated by glutamate [2,15]. Activation of Na⁺/Ca²⁺ exchanger in rat brain synaptosomes by glutamate and GM₁ can also have a protective effect, since its inactivation significantly promotes neuronal death in culture [3].

The study was supported by the Russian Foundation for Basic Research (grant No. 98-04-49686).

REFERENCES

- V. A. Tyurin, T. V. Sokolova, V. O. Gonchar, et al., Zh. Evoluts. Biokhim., 34, No. 5, 325-332 (1998).
- N. F. Avrova, I. V. Victorov, V. A. Tyrin, et al., Neurochem. Res., 23, 947-954 (1998).

- 3. N. Andreeva, B. Khodorov, E. Stelmaschook, et al., Brain Res., 248, 322-325 (1991).
- D. W. Choi and S. M. Rotman, Ann. Rev. Neurosci., 13, 171-182 (1990).
- O. P. Couninho, C. A. Carvalho, and A. P. Carvalho, *Brain Res.*, 290, 261-271 (1984).
- M. Favaron, H. Manev, H. Alho, et al., Proc. Natl. Acad. Sci. USA, 85, 7351-7355 (1988).
- 7. J. Folch, M. Lees, and G. S. Sloan-Stanley, *J. Biol. Chem.*, **226**, 497-509 (1957).
- 8. G. Grynkiewicz, M. Poenie, and R. Tsien, *Ibid.*, **260**, 3440-3450 (1985).
- 9. F. Hajos, Brain Res., 93, 485-489 (1975).
- O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265-275 (1951).
- J. O. Malva, A. F. Ambrosio, and A. P. Carvalho, Neurochem. Int., 32, 7-16 (1998).
- 12. H. Manev, M. Favaron, A. Guidoti, and E. Costa, *Mol. Pharmacol.*, **36**, 106-112 (1989).
- M. P. Mattson, M. A. Lovell, K. Furukawa, and W. R. Markesbery, J. Neurochem., 65, 1740-1751 (1995).
- 14. L. Tretter and V. Adam-Vizi, *Ibid.*, **66**, 2057-2066 (1995).
- V. A. Tyurin, Y.Y. Tyurina, and N. F. Avrova, *Neurochem. Int.*, 20, 401-407 (1992).
- S. L. Yates, E. N. Fluhler, and P. M. Lippiello, J. Neurosci. Res., 32, 255-260 (1992) .